The skull is a bony structure in the head of many animals that supports the structures of the face and forms a cavity for the brain.
The skull is composed of two parts: the cranium and the mandible
This is a blog that explains more about science,technology and create more research.
Tuesday, 10 May 2011
Saturday, 7 May 2011
The weather
Weather is the state of the atmosphere, to the degree that it is hot or cold, wet or dry, calm or stormy, clear or cloudy. Most weather phenomena occur in the troposphere,just below the stratosphere. Weather refers, generally, to day-to-day temperature and precipitation activity, whereas climate is the term for the average atmospheric conditions over longer periods of time. When used without qualification, "weather" is understood to be the weather of Earth.
Weather is driven by density (temperature and moisture) differences between one place and another. These differences can occur due to the sun angle at any particular spot, which varies by latitude from the tropics. The strong temperature contrast between polar and tropical air gives rise to the jet stream. Weather systems in the
Weather is driven by density (temperature and moisture) differences between one place and another. These differences can occur due to the sun angle at any particular spot, which varies by latitude from the tropics. The strong temperature contrast between polar and tropical air gives rise to the jet stream. Weather systems in the
Acid rain
The corrosive effect of polluted, acidic city air on limestone and marble was noted in the 17th century by John Evelyn, who remarked upon the poor condition of the Arundel marbles.[2] Since the Industrial Revolution, emissions of sulfur dioxide and nitrogen oxides to the atmosphere have increased.[3][4] In 1852, Robert Angus Smith was the first to show the relationship between acid rain and atmospheric pollution in Manchester, England.[5] Though acidic rain was discovered in 1852, it was not until the late 1960s that scientists began widely observing and studying the phenomenon.[6] The term "acid rain" was coined in 1872 by Robert Angus Smith.[7] Canadian Harold Harvey was among the first to research a "dead" lake. Public awareness of acid rain in the U.S increased in the 1970s after The New York Times promulgated reports from the Hubbard Brook Experimental Forest in New Hampshire of the myriad deleterious environmental effects demonstrated to result from it.[8][9]
Occasional pH readings in rain and fog water of well below 2.4 have been reported in industrialized areas.[3] Industrial acid rain is a substantial problem in China and Russia[10][11] and areas down-wind from them. These areas all burn sulfur-containing coal to generate heat and electricity.[12] The problem of acid rain not only has increased with population and industrial growth, but has become more widespread. The use of tall smokestacks to reduce local pollution has contributed to the spread of acid rain by releasing gases into regional atmospheric circulation.[13][14] Often deposition occurs a considerable distance downwind of the emissions, with mountainous regions tending to receive the greatest deposition (simply because of their higher rainfall). An example of this effect is the low pH of rain (compared to the local emissions) which falls in scandinavia
Occasional pH readings in rain and fog water of well below 2.4 have been reported in industrialized areas.[3] Industrial acid rain is a substantial problem in China and Russia[10][11] and areas down-wind from them. These areas all burn sulfur-containing coal to generate heat and electricity.[12] The problem of acid rain not only has increased with population and industrial growth, but has become more widespread. The use of tall smokestacks to reduce local pollution has contributed to the spread of acid rain by releasing gases into regional atmospheric circulation.[13][14] Often deposition occurs a considerable distance downwind of the emissions, with mountainous regions tending to receive the greatest deposition (simply because of their higher rainfall). An example of this effect is the low pH of rain (compared to the local emissions) which falls in scandinavia
cerobrospinal fluid
CSF is produced in the brain by modified ependymal cells in the choroid plexus (approx. 50-70%), and the remainder is formed around blood vessels and along ventricular walls. It circulates from the lateral ventricles to the foramen of Monro (Interventricular foramen), third ventricle, aqueduct of Sylvius (Cerebral aqueduct), fourth ventricle, foramina of Magendie (Median aperture) and foramina of Luschka (Lateral apertures); subarachnoid space over brain and spinal cord; reabsorption into venous sinus blood via arachnoid granulations.
It had been thought that CSF returns to the vascular system by entering the dural venous sinuses via the arachnoid granulations (or villi). However, some[1] have suggested that CSF flow along the cranial nerves and spinal nerve roots allow it into the lymphatic channels; this flow may play a substantial role in CSF reabsorbtion, in particular in the neonate, in which arachnoid granulations are sparsely distributed. The flow of CSF to the nasal submucosal lymphatic channels through the cribriform plate seems to be specially important.
It had been thought that CSF returns to the vascular system by entering the dural venous sinuses via the arachnoid granulations (or villi). However, some[1] have suggested that CSF flow along the cranial nerves and spinal nerve roots allow it into the lymphatic channels; this flow may play a substantial role in CSF reabsorbtion, in particular in the neonate, in which arachnoid granulations are sparsely distributed. The flow of CSF to the nasal submucosal lymphatic channels through the cribriform plate seems to be specially important.
sodium
/ˈsoʊdiəm/ SOH-dee-əm) is a metallic element with a symbol Na (from Latin natrium or Persian ناترون natrun; perhaps ultimately from Egyptian netjerj), and atomic number 11. It is a soft, silvery-white, highly reactive metal and is a member of the alkali metals within "group 1" (formerly known as 'group IA'). It has one stable isotope, 23Na.
Elemental sodium was first isolated by Humphry Davy in 1807 by passing an electric current through molten sodium hydroxide. Elemental sodium does not occur naturally on Earth, because it quickly oxidizes in air[2] and is violently reactive with water, so it must be stored in a non-oxidizing medium, such as a liquid hydrocarbon. The free metal is used for some chemical synthesis, analysis, and heat transfer applications.
Sodium ion is soluble in water, and is thus present in great quantities in the Earth's oceans and other stagnant bodies of water. In these bodies it is mostly counterbalanced by the chloride ion, causing evaporated ocean water solids to consist mostly of sodium chloride, or common table salt. Sodium ion is also a component of many minerals.
Sodium is an essential element for all animal life (including human) and for some plant species. In animals, sodium ions are used in opposition to potassium ions, to allow the organism to build up an electrostatic charge on cell membranes, and thus allow transmission of nerve impulses when the charge is allowed to dissipate by a moving wave of voltage change. Sodium is thus classified as a "dietary inorganic macro-mineral" for animals. Sodium's relative rarity on land is due to its solubility in water, thus causing it to be leached into bodies of long-standing water by rainfall.
Elemental sodium was first isolated by Humphry Davy in 1807 by passing an electric current through molten sodium hydroxide. Elemental sodium does not occur naturally on Earth, because it quickly oxidizes in air[2] and is violently reactive with water, so it must be stored in a non-oxidizing medium, such as a liquid hydrocarbon. The free metal is used for some chemical synthesis, analysis, and heat transfer applications.
Sodium ion is soluble in water, and is thus present in great quantities in the Earth's oceans and other stagnant bodies of water. In these bodies it is mostly counterbalanced by the chloride ion, causing evaporated ocean water solids to consist mostly of sodium chloride, or common table salt. Sodium ion is also a component of many minerals.
Sodium is an essential element for all animal life (including human) and for some plant species. In animals, sodium ions are used in opposition to potassium ions, to allow the organism to build up an electrostatic charge on cell membranes, and thus allow transmission of nerve impulses when the charge is allowed to dissipate by a moving wave of voltage change. Sodium is thus classified as a "dietary inorganic macro-mineral" for animals. Sodium's relative rarity on land is due to its solubility in water, thus causing it to be leached into bodies of long-standing water by rainfall.
Thursday, 5 May 2011
Carbon
Carbon ( /ˈkɑrbən/) is the chemical element with symbol C and atomic number 6. As a member of group 14 on the periodic table, it is nonmetallic and tetravalent—making four electrons available to form covalent chemical bonds. There are three naturally occurring isotopes, with 12C and 13C being stable, while 14C is radioactive, decaying with a half-life of about 5730 years.[9] Carbon is one of the few elements known since antiquity.[10][11] The name "carbon" comes from Latin carbo, coal.
There are several allotropes of carbon of which the best known are graphite, diamond, and amorphous carbon.[12] The physical properties of carbon vary widely with the allotropic form. For example, diamond is highly transparent, while graphite is opaque and black. Diamond is among the hardest materials known, while graphite is soft enough to form a streak on paper (hence its name, from the Greek word "to write"). Diamond has a very low electrical conductivity, while graphite is a very good conductor. Under normal conditions, diamond has the highest thermal conductivity of all known materials. All the allotropic forms are solids under normal conditions but graphite is the most thermodynamically stable.
All forms of carbon are highly stable, requiring high temperature to react even with oxygen. The most common oxidation state of carbon in inorganic compounds is +4, while +2 is found in carbon monoxide and other transition metal carbonyl complexes. The largest sources of inorganic carbon are limestones, dolomites and carbon dioxide, but significant quantities occur in organic deposits of coal, peat, oil and methane clathrates. Carbon forms more compounds than any other element, with almost ten million pure organic compounds described to date, which in turn are a tiny fraction of such compounds that are theoretically possible under standard conditions
There are several allotropes of carbon of which the best known are graphite, diamond, and amorphous carbon.[12] The physical properties of carbon vary widely with the allotropic form. For example, diamond is highly transparent, while graphite is opaque and black. Diamond is among the hardest materials known, while graphite is soft enough to form a streak on paper (hence its name, from the Greek word "to write"). Diamond has a very low electrical conductivity, while graphite is a very good conductor. Under normal conditions, diamond has the highest thermal conductivity of all known materials. All the allotropic forms are solids under normal conditions but graphite is the most thermodynamically stable.
All forms of carbon are highly stable, requiring high temperature to react even with oxygen. The most common oxidation state of carbon in inorganic compounds is +4, while +2 is found in carbon monoxide and other transition metal carbonyl complexes. The largest sources of inorganic carbon are limestones, dolomites and carbon dioxide, but significant quantities occur in organic deposits of coal, peat, oil and methane clathrates. Carbon forms more compounds than any other element, with almost ten million pure organic compounds described to date, which in turn are a tiny fraction of such compounds that are theoretically possible under standard conditions
Tuesday, 3 May 2011
The forest
Throughout recorded history, several cosmologies and cosmogonies have been proposed to account for observations of the universe. The earliest quantitative geocentric models were developed by the ancient Greeks, who proposed that the universe possesses infinite space and has existed eternally, but contains a single set of concentric spheres of finite size – corresponding to the fixed stars, the Sun and various planets – rotating about a spherical but unmoving Earth. Over the centuries, more precise observations and improved theories of gravity led to Copernicus's heliocentric model and the Newtonian model of the Solar System, respectively. Further improvements in astronomy led to the realization that the Solar System is embedded in a galaxy composed of billions of stars, the Milky Way, and that other galaxies exist outside it, as far as astronomical instruments can reach. Careful studies of the distribution of these galaxies and their spectral lines have led to much of modern cosmology. Discovery of the red shift and cosmic microwave background radiation revealed that the universe is expanding and apparently had a beginning.
According to the prevailing scientific model of the universe, known as the Big Bang, the universe expanded from an extremely hot, dense phase called the Planck epoch, in which all the matter and energy of the observable universe was concentrated. Since the Planck epoch, the universe has been expanding to its present form, possibly with a brief period (less than 10−32 seconds) of cosmic inflation. Several independent experimental measurements support this theoretical expansion and, more generally, the Big Bang theory. Recent observations indicate that this expansion is accelerating because of dark energy, and that most of the matter in the universe may be in a form which cannot be detected by present instruments, and so is not accounted for in the present models of the universe; this has been named dark matter. The imprecision of current observations has hindered predictions of the ultimate fate of the universe.
Current interpretations of astronomical observations indicate that the age of the universe is 13.75 ±0.17 billion years,[4] and that the diameter of the observable universe is at least 93 billion light years or 8.80×1026 metres.[5] According to general relativity, space can expand faster than the speed of light, although we can view only a small portion of the universe due to the limitation imposed by light speed. Since we cannot observe space beyond the limitations of light (or any electromagnetic radiation), it is uncertain whether the size of the universe is finite or infinite
According to the prevailing scientific model of the universe, known as the Big Bang, the universe expanded from an extremely hot, dense phase called the Planck epoch, in which all the matter and energy of the observable universe was concentrated. Since the Planck epoch, the universe has been expanding to its present form, possibly with a brief period (less than 10−32 seconds) of cosmic inflation. Several independent experimental measurements support this theoretical expansion and, more generally, the Big Bang theory. Recent observations indicate that this expansion is accelerating because of dark energy, and that most of the matter in the universe may be in a form which cannot be detected by present instruments, and so is not accounted for in the present models of the universe; this has been named dark matter. The imprecision of current observations has hindered predictions of the ultimate fate of the universe.
Current interpretations of astronomical observations indicate that the age of the universe is 13.75 ±0.17 billion years,[4] and that the diameter of the observable universe is at least 93 billion light years or 8.80×1026 metres.[5] According to general relativity, space can expand faster than the speed of light, although we can view only a small portion of the universe due to the limitation imposed by light speed. Since we cannot observe space beyond the limitations of light (or any electromagnetic radiation), it is uncertain whether the size of the universe is finite or infinite
Universe
Throughout recorded history, several cosmologies and cosmogonies have been proposed to account for observations of the universe. The earliest quantitative geocentric models were developed by the ancient Greeks, who proposed that the universe possesses infinite space and has existed eternally, but contains a single set of concentric spheres of finite size – corresponding to the fixed stars, the Sun and various planets – rotating about a spherical but unmoving Earth. Over the centuries, more precise observations and improved theories of gravity led to Copernicus's heliocentric model and the Newtonian model of the Solar System, respectively. Further improvements in astronomy led to the realization that the Solar System is embedded in a galaxy composed of billions of stars, the Milky Way, and that other galaxies exist outside it, as far as astronomical instruments can reach. Careful studies of the distribution of these galaxies and their spectral lines have led to much of modern cosmology. Discovery of the red shift and cosmic microwave background radiation revealed that the universe is expanding and apparently had a beginning.
According to the prevailing scientific model of the universe, known as the Big Bang, the universe expanded from an extremely hot, dense phase called the Planck epoch, in which all the matter and energy of the observable universe was concentrated. Since the Planck epoch, the universe has been expanding to its present form, possibly with a brief period (less than 10−32 seconds) of cosmic inflation. Several independent experimental measurements support this theoretical expansion and, more generally, the Big Bang theory. Recent observations indicate that this expansion is accelerating because of dark energy, and that most of the matter in the universe may be in a form which cannot be detected by present instruments, and so is not accounted for in the present models of the universe; this has been named dark matter. The imprecision of current observations has hindered predictions of the ultimate fate of the universe.
Current interpretations of astronomical observations indicate that the age of the universe is 13.75 ±0.17 billion years,[4] and that the diameter of the observable universe is at least 93 billion light years or 8.80×1026 metres.[5] According to general relativity, space can expand faster than the speed of light, although we can view only a small portion of the universe due to the limitation imposed by light speed. Since we cannot observe space beyond the limitations of light (or any electromagnetic radiation), it is uncertain whether the size of the universe is finite or infinite
According to the prevailing scientific model of the universe, known as the Big Bang, the universe expanded from an extremely hot, dense phase called the Planck epoch, in which all the matter and energy of the observable universe was concentrated. Since the Planck epoch, the universe has been expanding to its present form, possibly with a brief period (less than 10−32 seconds) of cosmic inflation. Several independent experimental measurements support this theoretical expansion and, more generally, the Big Bang theory. Recent observations indicate that this expansion is accelerating because of dark energy, and that most of the matter in the universe may be in a form which cannot be detected by present instruments, and so is not accounted for in the present models of the universe; this has been named dark matter. The imprecision of current observations has hindered predictions of the ultimate fate of the universe.
Current interpretations of astronomical observations indicate that the age of the universe is 13.75 ±0.17 billion years,[4] and that the diameter of the observable universe is at least 93 billion light years or 8.80×1026 metres.[5] According to general relativity, space can expand faster than the speed of light, although we can view only a small portion of the universe due to the limitation imposed by light speed. Since we cannot observe space beyond the limitations of light (or any electromagnetic radiation), it is uncertain whether the size of the universe is finite or infinite
The skin
Skin is a soft outer covering of an animal, in particular a vertebrate. Other animal coverings such as the arthropod exoskeleton or the seashell have different developmental origin, structure and chemical composition. The adjective cutaneous means "of the skin" (from Latin cutis, skin). In mammals, the skin is the largest organ of the integumentary system made up of multiple layers of ectodermal tissue, and guards the underlying muscles, bones, ligaments and internal organs.[1] Skin of a different nature exists in amphibians, reptiles, and birds.[2] All mammals have some hair on their skin, even marine mammals which appear to be hairless. Because it interfaces with the environment, skin plays a key role in protecting (the body) against pathogens[3] and excessive water loss.[4] Its other functions are insulation, temperature regulation, sensation, and the protection of vitamin D folates. Severely damaged skin will try to heal by forming scar tissue. This is often discoloured and depigmented.
Hair with sufficient density is called fur. The fur mainly serves to augment the insulation the skin provides, but can also serve as a secondary sexual characteristic or as camouflage. On some animals, the skin is very hard and thick, and can be processed to create leather. Reptiles and fish have hard protective scales on their skin for protection, and birds have hard feathers, all made of tough β-keratins. Amphibian skin is not a strong barrier to passage of chemicals and is often subject to osmosis. A frog sitting in an anesthetic solution could quickly go to sleep
Hair with sufficient density is called fur. The fur mainly serves to augment the insulation the skin provides, but can also serve as a secondary sexual characteristic or as camouflage. On some animals, the skin is very hard and thick, and can be processed to create leather. Reptiles and fish have hard protective scales on their skin for protection, and birds have hard feathers, all made of tough β-keratins. Amphibian skin is not a strong barrier to passage of chemicals and is often subject to osmosis. A frog sitting in an anesthetic solution could quickly go to sleep
The brain
The brain is the center of the nervous system in all vertebrate and most invertebrate animals.[1] Some primitive animals such as jellyfish and starfish have a decentralized nervous system without a brain, while sponges lack any nervous system at all. In vertebrates the brain is located in the head, protected by the skull and close to the primary sensory apparatus of vision, hearing, balance, taste, and smell.
Brains can be extremely complex. The cerebral cortex of the human brain contains roughly 15–33 billion neurons, perhaps more, depending on gender and age,[2] linked with up to 10,000 synaptic connections each. Each cubic millimeter of cerebral cortex contains roughly one billion synapses.[3] These neurons communicate with one another by means of long protoplasmic fibers called axons, which carry trains of signal pulses called action potentials to distant parts of the brain or body and target them to specific recipient cells.
The brain controls the other organ systems of the body, either by activating muscles or by causing secretion of chemicals such as hormones and neurotransmitters. This centralized control allows rapid and coordinated responses to changes in the environment. Some basic types of responsiveness are possible without a brain: even single-celled organisms may be capable of extracting information from the environment and acting in response to it.[4] Sponges, which lack a central nervous system, are capable of coordinated body contractions and even locomotion.[5] In vertebrates, the spinal cord by itself contains neural circuitry capable of generating reflex responses as well as simple motor patterns such as swimming or walking.[6] However, sophisticated control of behavior on the basis of complex sensory input requires the information-integrating capabilities of a centralized brain.
Despite rapid scientific progress, much about how brains work remains a mystery. The operations of individual neurons and synapses are now understood in considerable detail, but the way they cooperate in ensembles of thousands or millions has been very difficult to decipher. Methods of observation such as EEG recording and functional brain imaging tell us that brain operations are highly organized, while single unit recording can resolve the activity of single neurons, but how individual cells give rise to complex operations is unknown.[7]
Brains can be extremely complex. The cerebral cortex of the human brain contains roughly 15–33 billion neurons, perhaps more, depending on gender and age,[2] linked with up to 10,000 synaptic connections each. Each cubic millimeter of cerebral cortex contains roughly one billion synapses.[3] These neurons communicate with one another by means of long protoplasmic fibers called axons, which carry trains of signal pulses called action potentials to distant parts of the brain or body and target them to specific recipient cells.
The brain controls the other organ systems of the body, either by activating muscles or by causing secretion of chemicals such as hormones and neurotransmitters. This centralized control allows rapid and coordinated responses to changes in the environment. Some basic types of responsiveness are possible without a brain: even single-celled organisms may be capable of extracting information from the environment and acting in response to it.[4] Sponges, which lack a central nervous system, are capable of coordinated body contractions and even locomotion.[5] In vertebrates, the spinal cord by itself contains neural circuitry capable of generating reflex responses as well as simple motor patterns such as swimming or walking.[6] However, sophisticated control of behavior on the basis of complex sensory input requires the information-integrating capabilities of a centralized brain.
Despite rapid scientific progress, much about how brains work remains a mystery. The operations of individual neurons and synapses are now understood in considerable detail, but the way they cooperate in ensembles of thousands or millions has been very difficult to decipher. Methods of observation such as EEG recording and functional brain imaging tell us that brain operations are highly organized, while single unit recording can resolve the activity of single neurons, but how individual cells give rise to complex operations is unknown.[7]
Subscribe to:
Posts (Atom)